Retinoic acid controls proper head-to-trunk linkage in zebrafish by regulating an anteroposterior somitogenetic rate difference.

نویسندگان

  • Bambang Retnoaji
  • Ryutaro Akiyama
  • Tatsuro Matta
  • Yasumasa Bessho
  • Takaaki Matsui
چکیده

During vertebrate development, the primary body axis elongates towards the posterior and is periodically divided into somites, which give rise to the vertebrae, skeletal muscles and dermis. Somites form periodically from anterior to posterior, and the anterior somites form in a more rapid cycle than the posterior somites. However, how this anteroposterior (AP) difference in somitogenesis is generated and how it contributes to the vertebrate body plan remain unclear. Here, we show that the AP difference in zebrafish somitogenesis originates from a variable overlapping segmentation period between one somite and the next. The AP difference is attributable to spatiotemporal inhibition of the clock gene her1 via retinoic acid (RA) regulation of the transcriptional repressor ripply1. RA depletion thus disrupts timely somite formation at the transition, eventually leading to the loss of one somite and the resultant cervical vertebra. Overall, our results indicate that RA regulation of the AP difference is crucial for proper linkage between the head and trunk in the vertebrate body plan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zebrafish model of holoprosencephaly demonstrates a key role for TGIF in regulating retinoic acid metabolism.

Holoprosencephaly (HPE) is the most common human congenital forebrain defect, affecting specification of forebrain tissue and subsequent division of the cerebral hemispheres. The causes of HPE are multivariate and heterogeneous, and include exposure to teratogens, such as retinoic acid (RA), and mutations in forebrain patterning genes. Many of the defects in HPE patients resemble animal models ...

متن کامل

Retinoic Acid Promotes Limb Induction through Effects on Body Axis Extension but Is Unnecessary for Limb Patterning

Retinoic acid (RA) is thought to be a key signaling molecule involved in limb bud patterning along the proximodistal or anteroposterior axes functioning through induction of Meis2 and Shh, respectively. Here, we utilize Raldh2-/- and Raldh3-/- mouse embryos lacking RA synthesis to demonstrate that RA signaling is not required for limb expression of Shh and Meis2. We demonstrate that RA action i...

متن کامل

The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain.

We describe a new zebrafish mutation, neckless, and present evidence that it inactivates retinaldehyde dehydrogenase type 2, an enzyme involved in retinoic acid biosynthesis. neckless embryos are characterised by a truncation of the anteroposterior axis anterior to the somites, defects in midline mesendodermal tissues and absence of pectoral fins. At a similar anteroposterior level within the n...

متن کامل

Differential regulation of myosin heavy chains defines new muscle domains in zebrafish

Numerous muscle lineages are formed during myogenesis within both slow- and fast-specific cell groups. In this study, we show that six fast muscle-specific myosin heavy chain genes have unique expression patterns in the zebrafish embryo. The expression of tail-specific myosin heavy chain (fmyhc2.1) requires wnt signaling and is essential for fast muscle organization within the tail. Retinoic ac...

متن کامل

Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling.

Vertebrate forelimbs arise as bilateral appendages from the lateral plate mesoderm (LPM). Mutants in aldh1a2 (raldh2), an embryonically expressed gene encoding a retinoic acid (RA)-synthesizing enzyme, have been used to show that limb development and patterning of the limb bud are crucially dependent on RA signaling. However, the timing and cellular origin of RA signaling in these processes hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 141 1  شماره 

صفحات  -

تاریخ انتشار 2014